Medical

DESCRIPTIVE STATISTICS

LESSON:INTERPRETATION MEASURES OF CENTRAL TENDENCY

An Instructive Communication

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service

SPECIFICATIONS

Instuctional Objactives
After taking this Lesson as directed the student:

1. Can verbally define Measure of Central Tendency, Arithmetic Mean, Median, and Mode.
2. Can verbally describe when it is particularly appropriate to use the Arithmetic Mean, the Median, and the Mode.
3. Can verbally describe the data needed to compute the Arithmetic Mean or the Median.
4. Can verbally describe how an Arithmetic Mean or a Median may be used.
5. Given actual or verbal description of situations and/or data, can name from memory the Measure of Central Tendency (Arithmetic Mean, Median or Mode) most appropriate for use.
6. Given data (raw or in tabular form), can match it with certain descriptive factors: continuous, discrete, $\mathrm{N}<50, \mathrm{~N} \geq 50$, and value range of >14 or <15.
[See Limitations, Restrictions, and Special Characteristics below.]

Primary Traines Population
Public Health nurses and sanitarians with college degrees or equivalent.

Secondery Trainee Population

A. Public Health veterinarians, physicians, dentists, and other similarly related Public Health workers with college degrees or the equivalent should also be able to use this Lesson; however, the examples used in this booklet will not be relevant to this group.
B. With proper motivation and some additional effort, Public Health nurses and sanitarians with a high school education should also be able to use this Lesson.

Student Study Time

This Lesson should require from 2-4 hours, exclusive of breaks. We suggest that the student take a break at least every 1 to $11 / 2$ hours. The student should make every effort to complete the Lesson within a two-day period.

Individualization

At least $20-25 \%$ of the frames may be skipped by the student, depending on his own needs. Of course, there is no time limit imposed-the student may proceed at his own best rate.

Limitations, Restrictions, and Special Characteristics

A. The verbal definitions required of the student (see Instructional Objectives above) are brief and nontechnical.
B. The Lesson does not teach the student the procedures and techniques for computing the Measures of Central Tendency presented. However, the student should be able to use the companion computational guides more efficiently (less time-fewer errors).
C. For maximum effectiveness for both this Lesson and its companion computational guides, we suggest you follow the study of this Lesson with the use of the guides as soon as possible.

DESCRIPTIVE STATISTICS firitheath PROFESSIONS LESSON:INTERPRETATION

 MEASURES OF CENTRAL TENDENCY

An Instructive Communication
U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service

HEALTH SERVICES AND MENTAL HEALTH ADMINISTRATION
Center for Disease Control
Atlanta, Georgia 30333

Medical Library

PRODUCED BY CDC TRAINING PROGRAM

Methods Development Branch

Instructive Communications Activity

Richard E. Lincoln, Chief
Virginia H. Eller, Analyst-Writer
Julia M. Fuller, Editor
Robert L. Reynolds, Special Consultant

Technical Advisor
Dr. James C. Terrell, formerly Chief Biostatistics Unit, Georgia Department of Health

U.S. DEPARTMENT OF
 HEALTH, EDUCATION, AND WELFARE PUBLIC HEALTH SERVICE

Public Health Service Publication No. 2192
U.S. GOVERNMENT PRINTING OFIICE WASHINGTON: 197I

[^0]
CONTENTS

page
PREFACE iii
HOW TO USE THIS LESSON 1
INTRODUCTION 3
A MEASURE OF CENTRAL TENDENCY 12
SPECIFIC MEASURES OF CENTRAL TENDENCY 15
SPECIFIC MEASURES OF CENTRAL TENDENCY: MODE 16
SPECIFIC MEASURES OF CENTRAL TENDENCY: ARITHMETIC MEAN 20
SPECIFIC MEASURES OF CENTRAL TENDENCY: MEDIAN 22
MEAN AND MEDIAN COMPARED 25
MEETING THE CONDITIONS FOR USE 46
MEAN 47
MEDIAN 49
MODE 50
USING THE MEASURES OF CENTRAL TENDENCY 55
RECOGNIZING CHARACTERISTICS OF THE DATA 63
DATA WITH N OF < 50 or ≥ 50 64
DATA WITH DISCRETE OR CONTINUOUS VALUES 66
DATA WITH VALUE RANGE OF > 14 or <15 68

Digitized by GOOgle

PREFACE

In response to a general need voiced by students and teachers alike, we have developed a self-contained, job-oriented instructional package on Descriptive Statistics for the Health Professions. This is not meant to be an exhaustive treatment of statistics in general; it is limited, first, to descriptive statistics and, second, to those concepts and techniques most needed by health professionals working routinely with the basic statistical data. This attempt at job relatedness is also reflected in the post-instructional aims-we want the student to be able to put statistics to practical use, not converse in highly theoretical terms.

Because we have sought operational relevancy and technical simplicity, two cautions are in order:
(1) We have used health data in our examples in order to put the health professional in familiar surroundings. However, in our eagerness to keep the necessary basic math simple and the text unencumbered, we may have in places stretched the plausibility of certain health phenomena. Therefore, please don't take offense but rather remember that the health data is not intended to be authentic, only familiar.
(2) Also, in keeping with our simple, practical approach, highly complicated, technical concepts, definitions, and techniques have been avoided. Whenever this approach has conflicted with technical completeness, we have decided in favor of simplicity and practicality if technical accuracy is not violated. (Therefore, professional statisticians, please take note and do not hold your fellow professionals-our consulting statisticians-resonsible for any instructional liberties.)

Descriptive Statistics for the Health Professions is concerned with only those statistics that are generally classified as descriptive statistics:
(1) tables
(2) graphs
(3) descriptive ratios
(4) measures of central tendency
(5) measures of dispersion

The present booklet is a programmed self-instructional Lesson on the selection and use of the appropriate measure of central tendency. The Lesson should be taken prior to the use of its companion Guides, Arithmetic Mean: Computational Guide and Median: Computational Guide. A unique characteristic of this Lesson is that computational techniques, easily forgotten or made vague through disuse, are not taught. Such detailed techniques are covered in the Guides which are to be used when an actual need arises. Techniques are mentioned in the Lesson only as is necessary to make more meaningful the definitions of the specific measure of central tendency.

We feel strongly that this Lesson, when properly used, should significantly reduce training time and costs, reduce the public health professional's aversion to using statistics, and increase the effectiveness with which statistics are applied.

Digitized by COO Ote

HOW TO USE THIS LESSON

This Lesson is probably different from any you have ever used before-it is certainly different from the usual textbook or study manual.

On almost every page of the Lesson you will be asked to answer questions about what you are studying. Because of this "question and answer" way of teaching, many people confuse this type of lesson with a test. But it is not a test; it is a lesson that asks questions often and at the best times to help you learn. The questions help you think about what you are learning; the correct answers are given so that you can immediately see that you answered correctly and that you are learning.

1 In the front of this booklet you saw a small strip of cardboard called the ANSWER COVER. If you have not already done so, remove it...Now, place the ANSWER COVER over the groy part of the page on the right
The ANSWER COVER should now cover the entire gray area so this page looks like the one pictured below; does it? yes / no (Draw a circle around the correct answer.)

You should have circled one of the "yes" or "no" answers with your pencil. If you did not, do so now.... That was an easy question to answer, but to see that you are correct move the ANSWER COVER down the page until its top is even with the line below \qquad

2 Have you read what is written in the gray area? If not, do so now.
You see from what you just did that when a slash (/) is used to separate two or more words you must circle the correct answer. You may also be asked to check $(\sqrt{ })$ the right answer or write your answer in a blank. For example, answer the questions below:

1. This is / is not a test. (Circle the correct answer.)
2. Is this a lesson to help you learn? (Check the correct answer.)

yes
3. This Lesson is part of course on Descriptive \qquad for the Health Professions. (Write your answer in the blank:)

Now see if you have given the correct answers

Place ANSWER COVER over this area.

If you have been following instructions, you should have circled the yes answer.

1. is not
2. $\sqrt{\text { yes }}$
3. Statistics

BEFORE YOU READ ANY FURTHER BE SURE TO COVER THE GRAY AREA WITH THE ANSWER COVER. DO THIS EACH TIME YOU START A NEW PAGE.

3 You will notice that what you are studying is divided into parts containing various amounts of information and questions. These parts are called "frames."

Most frames have (1) a certain amount of information and
(2) questions for you to answer about the information in that frame or about other information you have studied before.

Is what you are now reading part of a frame? (Check one.)
\qquad yes
no
Don't forget to see if your answer is correct after you have written it; move the ANSWER COVER down to the next line \qquad
4 You will be able to answer many of the questions correctly. However, when you are wrong you should do which one of the following:
\qquad 1. Change your written answer; then go to the next frame.
2. Try to to see why you were wrong; then change your written answer and go to the next frame.
\qquad 3. Go to the next frame.
4. Start over again.

5 The correct answer to the last question is very important.
Just copying the correct answer when you are wrong will not help you learn as you should.

Looking at the correct answer before you write your own answer to the question will not help you learn as you should.

Copying your answers will make a difference only to you since it will keep you from learning as well as you might otherwise. This failure to learn the material will show up later in post-lesson testing or in on-the-job performance.

To learn as you should you must:
\qquad 1. read everything carefully.
2. follow instructions.
3. write your answers before looking at the correct answers given.
4. try to see why you were wrong-don't just copy the correct answer when you make a mistake.
\qquad 5. take all the time you need-this lesson was written so that you can set your own pace.
yes-what you were just reading is a frame: it gives information and also asks a question.
2. Don't just copy a correct answer if you are wrong: try to see why you are wrong: then change the answer and continue. all the answers.

INTRODUCTION

6 Because portions of the next several pages appear in part in other booklets of the course on Descriptive Statistics for the Health Professions, you may encounter some slight repetition if you have already studied one or more of the other booklets. However, we strongly recommend you give the entire Introduction your full attention.

No Answer Needed

7 Professionals in Public Health frequently use statistical methods to describe or predict (infer). However, these two classifications of statistics-descriptive and inferential-are not mutually exclusive; we must describe before we can infer. For example, descriptive statistics may be used to show that more men than women died from Disease "D," but without inferential statistics we could not infer that there was a real rather than a chance difference between men and women with regard to Disease "D," nor would we be able to predict that there would continue to be such a difference in the future.
Of the five statistics we have classified as "descriptive," this Lesson is concerned with (circle one) . . .

1. tables
2. graphs
3. descriptive ratios
4. measures of central tendency
5. measures of dispersion

8 Before we go any further in our specific discussion of "measures of central tendency," let's consider the basic working materials of descriptive statistics.

Example:

A frequency distribution based on laboratory data from Warren County Hospital in 1966 is represented in crude graph form below:

Now see if you can answer the following questions without spending too much time on the ones you don't know:

1. Give a proper verbal description of the group being considered in the graph.
2. What is the total frequency of the group?
3. What is the factor (variable) being studied (allowed to vary)?
4. What is being distributed?
5. How many cases are there for each value as represented in the graph?
6. Could male cases be included in the group?
\qquad yes no
7. Could cases discovered in 1967 while the report was being prepared be included?
\qquad yes
\square
Check your answers.
If you answered all the questions correctly, skip to Frame 26.
If you could not answer all the questions, go on to the next frame.
8. Cases of laboratory-confirmed lymphatic leukemia at Warren County Hospital in 1966.
9. 15
10. duration (of leukemia) in months
11. The total frequency (15) is being distributed among the various months of duration.
12. 1-10 s, 3-20 $\mathrm{s}, 5-30^{\circ} \mathrm{s}, 4-40^{\circ} \mathrm{s}$. 2-50's.
13. $\sqrt{ }$ yes
14. $\sqrt{ } \mathrm{no}$

9 Descriptive statistics may be thought of as a way of describing, in numerical terms, something about GROUPS of "cases" (people or events) having common characteristics. That is, all cases of the groups are matched (identical) with regard to certain characteristics. For example ...

THIS GROUP

Cases of laboratory-confirmed canicola fever in Columbus, Georgia, 1962.

HAS THESE CHARACTERISTICS IN COMMON

 FOR ALL ITS CASES(1) all were diagnosed-laboratory-confirmed-as canicola fever
(2) all occurred in Columbus, Georgia
(3) all occurred during 1962

Although the common characteristics that are made explicit restrict and control the group, certain other characteristics may, be true of the group and may be allowed to vary. For example, check $(\sqrt{ })$ the cases below that may be included in the group described above:
\qquad cases not laboratory confirmed cases laboratory confirmed male cases
\qquad female cases cases in Columbus, Ga. cases not in Columbus, Ga. cases over 21 years old
\qquad cases under 21 years old
\qquad cases in high socioeconomic setting
\qquad cases in low socioeconomic
\qquad
\qquad setting
\qquad
\qquad cases not in 1962
\qquad
\square cases in 1962
cases not laboratory confirmed
\checkmark male cases
\checkmark female cases
$\sqrt{ }$ cases Columbus, Ga.
cases not in Columbus, Ga.
$\sqrt{ }$ cases over 21 years old
\downarrow cases under 21 years old
$\sqrt{ }$ cases in high socio-
economic setting
$\sqrt{ }$ cases in low socio-
economic setting
cases not in 1962
cases in 1962

10 Sometimes characteristics that apply to only part of a group are used in a statement about the group. For example . . .

READ THIS STATEMENT

Of a group of 185 11-yearold boys, many of whom weigh about 60 pounds, each is 56 inches tall, three-fourths are in the 5th grade, and the rest are in other grades.

AND LIST ONLY THE CHARACTERISTICS ALL MEMBERS OF THE GROUP HAVE IN COMMON

All \qquad
All \qquad
All \qquad

All are 11 years old
All are boys
All are 56 inches tall

11 Sometimes we tend to think of the size (count) of a group as a common characteristic. This is obviously not correct, as you can easily see by trying to describe just one case in the group in Frame 10; for example, "The case must be a boy, 11 years old, 56 inches tall (but certainly not ' 185 ')." In descriptive statistics the terms "total frequency" or "number" are usually used to refer to the \qquad of a group.

12 We have already pointed out that for any group, many characteristics are not held constant but rather are allowed to vary. In fact, a group is often defined in order to see how certain characteristics VARY with respect to the group. In the statement below . . .
"Of 185 11-year-old boys, each is 56 inches tall, many weigh about 60 pounds, $3 / 4 \mathrm{~s}$ are in the 5 th grade, and the rest are in the other grades."

We can see that for the group implicit in the statement, weight is certainly not a common characteristic that is being held constant. If we wish to study more exactly how weight varies, we might formalize the statement thusly:
"A group of 185 56-inch-tall, 11-year-old boys, by weight in pounds."
Now, you list the following about the above proposed study . . .
THESE ARE THE COMMON

AND THIS IS THE COMMON CHARACTERISTIC
THAT WILL VARY
Common characteristics of the group:
$1 \frac{\text { height (} 56 \text { inches) }}{\text { age (} 11 \text { years old) }}$
sex (boys)
Varying charac teristic:
weight in pounds
185 is the number or total
The number 185 is the \qquad for the group.

13 In most instances the characteristic that is being studied (allowed to vary) is preceded by a certain preposition; circle this preposition in the following observation...
"Twenty-five cases of laboratory-confirmed canicola fever, by age, in Columbus, Georgia, 1962.

14 In a study, the common characteristics of a group are held constant while one or more common characteristics are allowed to \qquad .

15 The common characteristic that is allowed to vary may be referred to as the study \qquad able.
\qquad
16 A number of cases having certain constant common characteristics is called a \qquad .

Its size or count is called the \qquad . The common characteristic that is allowed to vary is called the study and is usually preceded by the preposition \qquad in a formal statement of the study.

```
group
    total frequency or number
    variable
    by
```


MEASURES OF CENTRAL TENDENCY INTRODUCTION

17 In the two observations below . .
underline the common characteristics of the group
double underline the total frequency of the group
circle the study variable

Example I

"Distribution of 25 males, ages 25-50 years, by grams (g.) of hemoglobin per 100 milliliters (ml.) of blood, Washoo County, 1960.

Example 2

"Distribution of $\mathbf{2 5}$ males with $16-17$ grams (g.) of hemoglobin per 100 milliliters (ml.) of blood, by age, Washoo County, 1960.

```
Example 1: "Distribution of
```

 25}\mathrm{ males, ages 25-50
    ```
    25}\mathrm{ males, ages 25-50
    years, by grams (g.)
    years, by grams (g.)
of hemoglobin per 100
of hemoglobin per 100
milliliters (mi.) of
milliliters (mi.) of
    blood. Washoo County.
    blood. Washoo County.
    1960."
```

```
    1960."
```

```
Example 2: "Distribution of
    25 males with \(16-17\) grams
    (g.) of hemoglobin per
    100 milliliters ( ml .) of
    blood, by age, Washoo
    County. 1960."

18 In only one of the two examples above is the unit by which the study variable is to be measured made explicit. This is not unusual when such information is assumed to be implicit in the name of the variable itself, i.e., in Example 2 the missing unit of measure is

19 We are now ready to discuss "frequency distributions." Notice that the two statements in the last frame begin with the word "distribution." Actually, this is a standard way of saying that we are going to look at the particular way in which individual frequencies of the group are distributed among the various values of the study variable. A frequency distribution is often represented graphically. We see this in oversimplified form as follows:
"Distribution of 10 boys with measles by age . . . ."
Each dot represents a boy with
measles; there are 10 boys (total
frequency)
and these are the various values of
the study variable (age)


yrs. yrs. yrs. yrs.
yrs.
\(11 \quad 12\)
\(13 \quad 14\)
15

In the above representation we can see that the individual frequencies (totaling 10) are distributed among the various values of the study variable so that no age value is
represented by more than \(\qquad\) case(s) of measles.

20 Often, individual frequencies are distributed so that a particular age value is represented by more than one case. For example . . .


According to the frequency distribution, how many cases are
\[
\begin{array}{ll}
6 \text { years old? } & 8 \text { years old? } \\
7 \text { years old? } & 9 \text { years old? }
\end{array}
\]

MEASURES OF CENTRAL TENDENCY INTRODUCTION

21 The relationship of the frequency of a group to the various values of the study variable is referred to as the \(\qquad\) .

22 In the last several frames we have referred to frequency distributions used in examples by a single word, as in " \(\qquad\) of 185 11-year-old boys by weight . . .."

23 You should now be able to answer all the questions about the following distribution based on laboratory data from the Lowin County Clinic in 1964:

1. What is a proper verbal description of the group being considered in the crude graph?
\(\qquad\)
2. What is the total frequency for the group? \(\qquad\)
3. What is the study variable?
4. What is being distributed? \(\qquad\)
5. How many cases are there for each value (weight)? \(\qquad\)
6. Could cases discovered in 1965 while the report was being prepared be included?
\(\qquad\) yes
no

\section*{Distribution}
1. Laboratory-confirmed uterine fibroids diag:nosed at Lowin County Clinie in 1964.
2. 13
3. weight in ounces
4. The frequency (13) is being distributed among the fibroid weights (in ounces).
5. 1-5,2-10,2-15, 3-20, 5-25
6. \(\underline{V}^{\text {no }}\)

24 If you made no errors in the last frame, go directly to Frame 26.
If you made errors, study for a moment why and then go to the next frame.

25 A frequency distribution based on laboratory data from Warren County Hospital in 1966 is represented in crude graph form below.

1. Describe the group. \(\qquad\)
2. What is the group's total frequency? \(\qquad\)
3 . What is the study variable? \(\qquad\)
4. What is being distributed? \(\qquad\)
5. How many cases are there for each value? \(\qquad\)
6. Is the group restricted by sex?
\(\qquad\) yes
\(\qquad\) no
7. Is the group restricted by time of occurrence?
\(\qquad\) yes
—no
1. Cases of laboratoryconfirmed lymphatic leukemia at Warren County Hospital in 1966.
2. 15
3. duration (of leukemia) in months
4. The frequency (15) is being distributed among the various months of duration.
5. \(1-10,3-20,5-30\),

4-40, and 2-50
6. \(\sqrt{ }\) no
7. \(\overline{\sqrt{ }}\) yes

\section*{A MEASURE OF CENTRAL TENDENCY}

26 If this lesson had been called "averages" rather than "Measures of Central Tendency," more people would know from its title what is being taught. How do you now define "Measures of Central Tendency"-write your definition below:
\(\qquad\)
\(\qquad\)
\(\qquad\)

27 Does your definition match in meaning, if not stated word-for-word, the one below:
"A measure of central tendency is a value that is used to represent the center of a distribution of values. It is considered to be a representative value which can be used in place of numerous individual values."

If your definition matches the one above, go now directly to Frame 33.
Or, if not, does your definition match the one below better:
"A value obtained by adding all the individual values of a distribution and dividing by the number of values. It is considered to be a representative value which can be used in place of numerous individual values."
If so, go to the next frame.

28 The second definition given in the last frame is probably what most people think of as a measure of central tendency or average. However, it more appropriately identifies a particular type of average known technically as the "arithmetic mean." Therefore, your answer, though not correct, is not wholly incorrect-just too specific as you will see as you continue reading.

No Answer Needed
See Next Frame

\section*{MEASURES OF CENTRAL TENDENCY A MEASURE OF CENTRAL TENDENCY}

29 The definition for measure of central tendency (average) we expect you to learn is: " A value that is used to represent the center of a distribution of values. It is considered to be a representative value which can be used in place of numerous individual values."

Although the definition you used originally may suggest the same meaning as the one above, a key word that states the function of a Measure of Central Tendency and that should be used in its definition is \(\qquad\) .

30 The average may be thought of as representing (a) the \(\qquad\) of the distribution and (b) the individual \(\qquad\) of the distribution.

31 A definition of "Measure of Central Tendency" must indicate that its function is to
\(\qquad\) the \(\qquad\) of a distribution
and that it may be used to \(\qquad\) the
\(\qquad\) values of the \(\qquad\) .
\(\qquad\)
32 See if you can now state from memory the definition of Measure of Central Tendency we will use in this Lesson:
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
In your own words you should have said that it is a value which represents the center of a distribution and can be used to represent the individual values of the distribution.

Digitized by Google

\section*{SPECIFIC MEASURES OF CENTRAL TENDENCY}

33 We will now discuss the three most commonly used Measures of Central Tendency: the arithmetic mean, the median, and the mode.

\section*{SPECIFIC MEASURES OF CENTRAL TENDENCY: MODE}

34 In this Lesson we are defining mode as: "A Measure of Central Tendency which, for any list of values, is the single value or group of values which occurs most often." The mode in each of the two simple distributions shown graphically below is the number of injections occurring most often. What are the modes in the two distributions:
1. MODE: \(\qquad\)

2. MODE: \(\qquad\)

1. 6 injections per person
2. 1-2 injections per person
\(\qquad\)
the mode because it was the \(\qquad\) that occurred most often.
```

single
group of values

```

MEASURES OF CENTRAL TENDENCY SPECIFIC MEASURES OF CENTRAL TENDENCY: MODE

36 What is the mode for each of the worktables shown below:
1. MODE: \(\qquad\)
WORKTABLE: Patients Dying From Heart Rupture By Age In Years, Los Angeles County Hospital, July 1941-Oct. 1951.
\begin{tabular}{cc}
\hline \begin{tabular}{c} 
Age in \\
Years
\end{tabular} & \begin{tabular}{c} 
Number \\
of \\
Patients
\end{tabular} \\
\hline \(50-54\) & 2 \\
\hline \(55-59\) & 5 \\
\hline \(60-69\) & 27 \\
\hline 70.79 & 33 \\
\hline \(80-89\) & 13 \\
\hline & 80 \\
\hline
\end{tabular}
- Age at last birthday
2. MODE: \(\qquad\)
WORKTABLE: Distribution of 75 Restaurants By Number Of
Inspections During The Year, Center County, 1965

Number
of
Inspections

Number
Restaurants
\begin{tabular}{cc}
\hline 2 & 6 \\
\hline 4 & 12 \\
\hline 6 & 22 \\
\hline 10 & 19 \\
\hline 12 & 11 \\
\hline & 4 \\
\hline
\end{tabular}
1. 70-79 years
2. 6 inspections

MEASURES OF CENTRAL TENDENCY SPECIFIC MEASURES OF CENTRAL TENDENCY: MODE

37 In part 2. of the last frame, six inspections (the mode) was the \(\qquad\) that occurred ; in part 1., 70-79
years was the \(\qquad\) that occurred \(\qquad\) single value most often group of values most often

In your own words you should have said that the mode is a Measure of Central Tendency which, for any list of values, is that single value or group of values which occurs most often.

A Measure of Central Tendency is a value that is used to represent the center of a distribution of values. It is considered to be a representative value which can be used in place of numerous individual values.

\section*{SPECIFIC MEASURES OF CENTRAL TENDENCY: ARITHMETIC MEAN}

40 In this Lesson we are defining "arithmetic mean" (or simply "mean") as: "A Measure of Central Tendency obtained by adding all the individual values and dividing by the number of values." Actually when most people use the word "average" (a term roughly synonymous with Measure of Central Tendency), they are talking about the mean.

The college student who computes his quality-point "average" is actually finding his mean quality point value. To find the mean he . . .
1. lists the quality points he has received for each hour of credit,
2. adds up the list of values (quality points), and
3. divides the total value by the total number of credit hours.

The ages of a group of children who have the measles are \(1,3,7,9,9,12\), and 15 .
What is their mean age? \(\qquad\)
8 years
Skip to frame 42 if you were correct.

41 To find the mean age in the last frame . . .
1. list all ages 1

3
7
9
9
12
15
2. add all values 56
3. 8 years is the group's mean age
3. divide by number of children \(7 \overline{56}\)

No Answer Needed

42 Recall (and write) from memory the definition of the mean:
\(\qquad\) In your own words you should have said that the mean is a Measure of Central Tendency obtained by adding all the individual values and dividing by the number of values.

43 The mean is often referred to as a "weighted" average since the size (weight) of each individual value is mathematically reflected in the mean value for the group. Because the mean is so mathematically sensitive to the size of all the individual cases, atypical valuesextremely high or low-will tend to bias the mean in their \(\qquad\)

44 In the following distribution of ages .
\(\mathbf{5}, \mathbf{6}, \mathbf{2 0}, 22,23,24,26,27,30,31,32,34\)
the mean will be: (check one or more)
\(\qquad\) (a) lower than it should be to represent the distribution "operationally"
\(\qquad\) (b) higher than it should be to represent the distribution "operationally"
\(\qquad\) (c) a mathematically correct Measure of Central Tendency
\(\qquad\) (d) none of the above
(a) (It is biased toward the 5 and 6.)
(c) (It is still mathematically correct.)

\section*{MEASURES OF CENTRAL TENDENCY}

\section*{SPECIFIC MEASURES OF CENTRAL TENDENCY: MEDIAN}

45 In this Lesson we are defining "median" as: "A Measure of Central Tendency which, for any distribution of values ranked from smallest to largest, is above one half and below the other half of the values."

Below, seven cases have been ranked in order from youngest to oldest. The middle position is occupied by a case whose value is 11 years:


The seven cases in the distribution were ranked in order from \(\qquad\) to \(\qquad\) .

Is there an atypical age among the ranked cases-if so, what is it?
\(\frac{\text { youngest (2) }}{\frac{\text { oldest (15) }}{2 \text { years }}}\)

46 The great advantage of the median as a Measure of Central Tendency is that it is not a "weighted" average as is the mean. Therefore, it is not affected by the extreme value (size) of any case in the distribution. Values are used only to assign the rank position to the cases; the value of the case in the middle position is the median value.
A group of seven cases by weight is shown below . . .


Now, you rearrange the cases in rank order by filling in the values below:


Draw an arrow to the middle position in the rank order ... therefore, what is the median? \(\qquad\)
Are there any atypical values (cases) in the distribution?
\(\qquad\) yes no
If so, list the value(s). \(\qquad\)
Was the selection of the median affected by the atypical size of the case value(s)?
\(\qquad\) yes no

MEASURES OF CENTRAL TENDENCY
SPECIFIC MEASURES OF CENTRAL TENDENCY: MEDIAN

47 Recall and write from memory the definition of the median: \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

48 From memory, recall the definition of mean; think your answer.

49 From memory, recall the definition of mode; think your answer.

From memory, recall the definition of Measure of Central Tendency; think your answer.

In your own words you should have said that the median is a Measure of Central Tendency which, for a distribution of values ranked from smallest to largest, is above one half and below the other half of the values.

The arithmetic mean is a Meosure of Central Tendency obtained by adding all the individual values and dividing by the number of values.

The mode is a Measure of Central Tendency which, for any list of values, is the single value or group of values which occurs most often.

\footnotetext{
A Measure of Central Tendency is a value that is
used to represent the center of a distribution of values. It is considered to be a representative value which can be used in place of numerous individuai values.
}

\section*{MEAN AND MEDIAN COMPARED}

51 Complete the two statements below by filling in the letter a or b :
1. The mean \(\qquad\) a. is more mathematically sensitive to the sizes (weights) of the values of a distribution.
2. The median \(\qquad\) b. is sensitive to the size of the values of a distribution only to the extent that they affect the ranked position of the values.


52 Let's see more specifically how the size (weight) of the individual values affects the mean and median in the following distribution.
The values in this list
are in a random order
with no regard to rank. \begin{tabular}{l} 
The same values are \\
listed below in rank \\
order-from smallest \\
to largest.
\end{tabular}
\begin{tabular}{|c|c|}
\hline 4 & What is the mean value of \\
\hline 6 & the list of values-use the \\
\hline 2 & - column on the left \\
\hline 8 & (mean) \\
\hline 7 & \\
\hline 6 & What is the median value of \\
\hline 3 & the list of values-use the \\
\hline 4 & column on the right \\
\hline 5 & (median) \\
\hline
\end{tabular}

53 You should notice that the mean value of 5 could be determined by simply adding the random list of values and dividing this total (45) by the total number of values (9).

However, to determine the median of 5 , it was necessary to rank the values from smallest to largest to find which value represents the middle position below one half the values and above the other half.

54 For the values in Frame 52, both mean and median are 5 . What if the value 8 were changed to 17-would the mean and median still be equal?

\section*{17}
\(\mathbf{4}, \mathbf{6}, \mathbf{2}, \mathbf{8}, \mathbf{7}, \mathbf{6}, 3,4,5\)
\(\qquad\) yes
no
don't know
mean: \(\frac{5}{\text { median: } 5}\)
If correct, you may skip
Frame 53.

No Answer Needed


55 No, the new mean and median are not equal when the value 8 is changed to 17 . Let's see what it would be-we will demonstrate with only the list that is ranked even though it is not needed for the mean...
We see that 5 still occupies the
middle position in the ranked data
and, therefore, is still the
median value \(\longrightarrow\) MEDIAN

\begin{tabular}{l} 
However, the change in size (weight) \\
of one of the values has such a direct \\
effect on the mean that it is changed
\end{tabular}
POSITION

No Answer Needed
\(\sqrt{ }\) yes (skip to Frame 58 if correct)


57 Yes, by increasing the 8 to 17 , an atypical value was introduced to the list and the mean was weighted unrealistically in the direction of the larger values. Study the illustration below:


We see that the median value of 5 is more representative of most values than is the mean (6) which increased in order to take into account the extreme value 17.

58 A list of ages can also be modified by using open-ended intervals. An open-ended interval is an interval in which only one limit, or "end," is known. Both " \(>55\) " (greater than 55) and " \(<8\) " (less than 8 ) are \(\qquad\) intervals.

59 Now let's add an open-ended interval to our list of ages to see the effect it has on the mean and median:
```

2
3
4
4
5
6
6 and two values >6 (greater than 6)

```

Can the median be computed in the above example-check and complete the answer below:
\(\qquad\)
yes, the median value is no, because
\(\qquad\) don't know

60 Yes, the median can be computed even when the data contain an open-ended interval-if you know the frequency involved, and if the median does not fall in the open-ended interval.

In the above example we know that there are \(\mathbf{9}\) values in all (the total frequency or number), we can make an approximate ranking to find the value of the middle position, and we know from what's given that the middle position does not fall in the open-ended interval. With this in mind, what is the median for the distribution below:
46, 40, 40, 48, 47, 45, 44, 43, 41, 42, 39, 42, 45, 49, 42, 2 values under 39 , and 4 values over 50 .

MEDIAN is \(\qquad\)
HINT: Rank your values and then find the middle position.


44 (21 is the total frequency; therefore, the median value occupies the 11th position of the ranked values.)

61 When all specific values of a distribution are not known because there is an open-ended interval, for example ...
```

2
3
4
4
5
6
6 and two values >

```
can the mean be computed; check and complete the answer below:
\(\qquad\) yes, the mean value is \(\qquad\)
\(\qquad\) no, because \(\qquad\) pute the mean the sum of all specific values must be known. (skip to Frame 63 if correct)

values. In the example above we know the total frequency (9) but we cannot determine the sum of values because we do not know the two values in the open-ended interval.

63 A comparison of the mean and median indicates the following characteristics ( circle the correct answer ):
1. Extremely high or low (atypical) values in a distribution will unrealistically (and impractically) bias the mean/median in their direction.
2. When a distribution contains an open-ended interval, only the mean / median can be computed.
3. With respect to atypical values and open-ended intervals, the mode is most like the mean / median
1. mean
2. median
3. median

64 Is it enough to say that all that is needed to compute the mean, median, or mode is the total number of values in a distribution and a listing of each value that occurs in that distribution?
\(\qquad\)


65 No, we had hoped you would know that such an unqualified statement is not valid. Although the median can sometimes be computed when all values are not known, the mean requires that all values and their frequencies be reported so that we can compute the sum of all values and the total number of values.

No Answer Needed

Digitized by Google

66 We have already touched on how the completeness of your data affects the computability of the Measure of Central Tendency. More explicitly, to compute the mean we use a list of all the individual values or a table in which all the values are listed according to their frequency of occurrence-no open-ended intervals are permissible since we need to find the sum of all values and the total number of values. Can the mean number of visits be computed for the following examples:
\(\qquad\) 1. Thirty patients visited a clinic \(\mathbf{2 , 3}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{8}, 10\), or 20 times apiece during its first quarter of operation.
2. During its first quarter of operation a clinic had patients make the following number of repeated visits: \(\mathbf{2 , 4 , 8}, \mathbf{1 0}, \mathbf{6}, 5, \mathbf{4}, 3,2,4,3,2,6,8,8,10,20\), \(20,2,3,4,6,5,3,4,5,4,3,2,8\).

67 We have said that to compute the mean we use a list of all the individual values.... In example one above we have the total number of cases (30) given, but only the types of values indicated. What is needed is how often 2 visits were made, how often 3 visits were made, etc.

In example two above we are given a list with each individual value listed as often as it occurs. With this information we can find the sum of the visits and the number of cases involved.

68 To compute the MEAN we use a list of all the \(\qquad\)
\(\qquad\) or a \(\qquad\) in which the values are
listed according to their \(\qquad\) of occurrence-no open-ended intervals are permissible.

\section*{MEASURES OF CENTRAL TENDENCY MEAN AND MEDIAN COMPARED}

69 Can the mean be computed for any of the examples to follow:
1. Distribution of ages of patients at a special clinic during January: 46, 40, \(40,48,47,45,44,43,41,42,39,42,45,49,42,2\) ages under 39 , and 4 ages over 50 .
2.

WORKTABLE: Distribution Of 175 Preschool Children By Number Of Immunizations, Center County, 1963
\begin{tabular}{cc}
\hline \begin{tabular}{c} 
Number of \\
Immunizations
\end{tabular} & \begin{tabular}{c} 
Number of \\
Children
\end{tabular} \\
\hline 1 & 15 \\
\hline 3 & 23 \\
\hline 4 & 40 \\
\hline 6 & 38 \\
\hline 7 & \(N^{*}=\) \\
\hline 8 & 30 \\
\hline Total & \\
\hline
\end{tabular}
- N is a symbol used for \(N\) umber (total frequency)
3.

WORKTABLE: Distribution Of Cases Of Poliomyelitis By Age In Years, Center County, January-June, 1962
\begin{tabular}{cc}
\hline \begin{tabular}{c} 
Age in \\
Years
\end{tabular} & \begin{tabular}{c} 
Cases of \\
Poliomyelitis
\end{tabular} \\
\hline Under 4 & 25 \\
\hline 5 & 10 \\
\hline 6 & 12 \\
\hline 7 & 9 \\
\hline 8 & 16 \\
\hline 9 & 13 \\
\hline 10 & 14 \\
\hline Total & -99 \\
\hline
\end{tabular}
4.

WORKTABLE: Number Of Longshoremen Covered By Medical Care Plan For 12 Months, By Age In Years On July 1, 1955, Stockton, Calif., July 1955-June 1956
\begin{tabular}{cc}
\hline \begin{tabular}{l} 
Age in \\
Years
\end{tabular} & \begin{tabular}{c} 
Number of \\
Longshoremen
\end{tabular} \\
\hline \(\mathbf{1 6 - 1 9}\) & 5 \\
\hline \(20-24\) & 22 \\
\hline \(25-29\) & 47 \\
\hline \(30-34\) & 43 \\
\hline \(35-39\) & 55 \\
\hline \(40-44\) & 91 \\
\hline \(50-54\) & 78 \\
\hline \(60-69\) & 68 \\
\hline \(65-69\) & 34 \\
\hline \(70 t a l\) & 30 \\
\hline
\end{tabular}
5.

WORKTABLE: Distribution Of 100 One-Year-Old Babies, By Weight In Pounds, Center County Baby Clinic, 1965
\begin{tabular}{cc}
\hline \begin{tabular}{c} 
Weight in \\
Pounds
\end{tabular} & \begin{tabular}{c} 
One-year- \\
Old Babies
\end{tabular} \\
\hline \(20-21\) & 4 \\
\hline \(22-23\) & 15 \\
\hline \(24-25\) & 31 \\
\hline \(26-27\) & 35 \\
\hline \(28-29\) & 12 \\
\hline \(30-31\) & \begin{tabular}{l}
100 \\
\hline Total
\end{tabular}
\end{tabular}

\section*{MEASURES OF CENTRAL TENDENCY \\ MEAN AND MEDIAN COMPARED}

70 The mean can be computed from data in list or in tabular form-but no open-ended intervals are permissible.

In example one on page 34, though you can determine that 22 patients are involved, the sum of ages cannot be found when you are not given the particular ages less than 39 and more than 50.

In example two, the number of cases is 175 , and you are given all individual values even though they are grouped; therefore, the sum of values can be found.

In example three, the particular values under 4 years are not given.
In example four, the particular values over 69 years are not given.
In example five, enough information is given so that you can find the midpoint values to represent all individual values-this will allow the mean to be computed.
We see that the mean could not be computed for examples 1,3 , and 4 because the data given contained \(\qquad\) intervals.

\section*{open-ended}

71 To compute the MEAN we use \(\qquad\) In your own words you should have said we use a list of individual values or a table in which the values are listed according to their frequency of occurrence-the data should contain no open-ended inter vals.

72 The data used to compute the median is similar to that used to compute the mean. However, does the median require that no open-ended intervals be present?
\(\qquad\) no
\(\qquad\) yes
don't know

73 Recall that the median is that value occupying the "middle position" among values ranked from smallest to largest. For example, consider the ranked data below:

3 values \(<2,2,2,3,4,4,4,5,6,6,7,8,9,4>9\)
Although both ends of the ranked values are "open" we know that there is a total of 19 values and that the middle position is occupied by \(\qquad\) .

74 We see from the last example that open-ended data does not prevent us from finding the median value as long as the inclusive individual frequencies of the open-ended intervals are given, and the median does not fall in an open-ended interval.

75 To compute the mean or median we use a list of the \(\qquad\) values or a \(\qquad\) in which the values are listed according to their \(\qquad\) of occurrence. To compute the mean the data may contain \(\qquad\) intervals. To com-
pute the median the data may contain \(\qquad\) intervals if inclusive frequencies of open-ended intervals are given and the median does not fall in an interval.


76 In addition to open-ended intervals, data may also contain missing values, for example:
```

2
3
4
5
6
and 2 unknown values

```

Can the mean be computed in the above example-check and complete the answer below:
\(\qquad\) yes, the mean value is \(\qquad\)
\(\qquad\) no, because \(\qquad\)
\(\qquad\) don't know

77 The mean is found by dividing the sum of the values by the number (total frequency) of values. In the example above we know the total frequency (7) but we cannot determine the sum of values because we do not know the missing (unknown) values.

78 When the data contains missing values, for example ...
```

2
3
4
5
6
and 2 unknown values

```
can the median be computed; check and complete the answer below:
\(\qquad\)

\section*{\(\sqrt{ }\) no, because to compute} the median the values must be ranked from smallest to largest and we cannot rank values which are unknown. (skip to Frame 80 if all your answers were correct)


79 The median cannot be computed when the data contains missing values, even if we know the frequency. In the above example we do not know what position the unknown values would occupy in the ranking; therefore, we cannot find the middle position, or median.

MEASURES OF CENTRAL TENDENCY
MEAN AND MEDIAN COMPARED

80 Place the appropriate letter beside the descriptions of data below to show that it can be used to compute . . .
a. the mean
b. the median
c. either
d. neither
\(\qquad\) 1. Distribution of ages of patients at a special clinic during January: 46, 40, 40, \(48,47,45,44,43,41,42,39,42,45,49,42,2\) ages under 39 , and 4 ages over 50 .
2.

WORKTABLE: Distribution Of Intensive Care Patients By Age In Years, General Hospital, 1960
\begin{tabular}{cc}
\hline \begin{tabular}{c} 
Age in \\
Years
\end{tabular} & \begin{tabular}{c} 
Number of \\
Patients
\end{tabular} \\
\hline \(11-20\) & 5 \\
\hline \(21-30\) & 9 \\
\hline \(31-40\) & 20 \\
\hline \(41-50\) & 41 \\
\hline \(51-60\) & 39 \\
\hline 760 & 143 \\
\hline Total & \\
\hline
\end{tabular}
3.

WORKTABLE: Distribution Of 175 Preschool Children By Number Of Immunizations, Center County, 1963
\begin{tabular}{cc}
\hline \begin{tabular}{l} 
Number of \\
Immunizations
\end{tabular} & \begin{tabular}{c} 
Number of \\
Children
\end{tabular} \\
\hline 1 & 15 \\
\hline 3 & 23 \\
\hline 4 & 40 \\
\hline 6 & 38 \\
\hline 7 & 30 \\
\hline 8 & 29 \\
\hline Total & 175 \\
\hline
\end{tabular}

\title{
MEASURES OF CENTRAL TENDENCY
}

MEAN AND MEDIAN COMPARED

80 (continued)
4.

WORKTABLE: Distribution Of Ceses Of Poliomyolitis By Age In Years, Center County, Jenuary-June, 1962
\begin{tabular}{cc}
\hline \begin{tabular}{c} 
Age in \\
Yeers
\end{tabular} & \begin{tabular}{c} 
Ceses of \\
Poliomyelitis
\end{tabular} \\
\hline Under 4 & 25 \\
\hline 5 & 10 \\
\hline 6 & 12 \\
\hline 7 & 9 \\
\hline 8 & 16 \\
\hline 9 & 13 \\
\hline 10 & 14 \\
\hline Total & \(\mathbf{N}=99\) \\
\hline
\end{tabular}

\section*{MEASURES OF CENTRAL TENDENCY MEAN AND MEDIAN COMPARED}

\section*{80 (continued)}
5.

WORKTABLE: Number of Longshoremen Covered By Medical Care Plan for 12 Months, By Age In Years On July 1, 1955, Stockton, Calif., July 1955-June 1956
\begin{tabular}{cc}
\hline \begin{tabular}{c} 
Age in \\
Years
\end{tabular} & \begin{tabular}{c} 
Number of \\
Longshoremen
\end{tabular} \\
\hline \(16-19\) & 5 \\
\hline \(20-24\) & 22 \\
\hline \(25-29\) & 47 \\
\hline \(30-34\) & 43 \\
\hline \(35-39\) & 55 \\
\hline \(40-44\) & 91 \\
\hline \(50-54\) & 78 \\
\hline \(55-59\) & 68 \\
\hline \(60-64\) & 34 \\
\hline \(65-69\) & 30 \\
\hline Unknown & 46 \\
\hline Total & 3 \\
\hline
\end{tabular}
6.

WORKTABLE: Distribution Of 100 One-Year-Old Babies, By Weight In Pounds, Center County Baby Clinic, 1965
\begin{tabular}{cc}
\hline \begin{tabular}{c} 
Weight in \\
Pounds
\end{tabular} & \begin{tabular}{c} 
One-Year- \\
Old Babies
\end{tabular} \\
\hline \(20-21\) & 4 \\
\hline \(22-23\) & 15 \\
\hline \(24-25\) & 31 \\
\hline \(26-27\) & 35 \\
\hline \(28-29\) & 12 \\
\hline Total & 3 \\
\hline
\end{tabular}
\(\qquad\)
7.

WORKTABLE: Distribution of Cases of Disbetes By Age In Years, Center
County, 1965
\begin{tabular}{cc}
\hline \begin{tabular}{c} 
Age in \\
Yeers
\end{tabular} & \begin{tabular}{c} 
Number of \\
Cases
\end{tabular} \\
\hline \(\mathbf{5 - 2 4}\) & 15 \\
\hline \(\mathbf{2 5 - 4 4}\) & 44 \\
\hline \(\mathbf{4 5 - 5 4}\) & 61 \\
\hline \(\mathbf{5 5 - 6 4}\) & \(\mathbf{7 9}\) \\
\hline \(\mathbf{9 4}\) & Unknown \\
\hline
\end{tabular}

81 In example one, because the data is open at each end, you cannot compute the mean; however, because the frequencies of the open-ended intervals are given, we will be able to find the median.

In example two, the number of patients \(>\mathbf{6 0}\) years old is more than half of the total number of patients; therefore, the median would fall within the open-ended interval and neither mean nor median can be computed.

In example three, all values and their frequency are given; therefore, either mean or median can be computed
In example four, the open-ended interval (under 4) allows for the computation of only the median.

In example five, the missing values (Unknown) allow for the computation of neither the median nor the mean.

In example six, all values and their frequency are given; therefore, either mean or median can be computed.

In example seven, the frequency for the open-ended interval ( \(>94\) ) is unknown; therefore, neither the mean nor the median can be computed.

We can see from the above examples that the mean / median can be computed anytime
the mean / median can, but not the reverse.

MEASURES OF CENTRAL TENDENCY MEAN AND MEDIAN COMPARED

82 What is the similarity and the difference in data that can be used to compute the mean and the median? \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

83 From memory, define Measure of Central Tendency (think your answer):

84 From memory, define mean (think your answer):

85 From memory, define median (think your answer):

In your own words you should have said that both can be computed from a list of the individual values or a table in which values are listed with their particular frequency. In computing the mean openended intervals are not permissible; in computing the median open-ended intervals are permissible if inclusive frequencies are provided for the open-ended intervals, and the median does not fall in an open-ended interval.

In your own words you should have said that it is a value which represents the center of a distribution and can be used to represent the individual values of the distribution.

In your own words you should have said that the arithmetic mean is a Measure of Central Tendency obtained by adding all the individual values and dividing by the number of values.

In your own words you should have said that the median is a Measure of Central Tendency which, for a distribution of values ranked from smallest to largest, is above one half and below the other half of the values.

86 From memory, define mode (think your answer):

87 On which of the Measures of Central Tendency will extreme, atypical values have the most undesirable effect? \(\qquad\)
What is that effect?(Think your answer.)

88 Which Measure of Central Tendency cannot be computed from data having "open-ended intervals?" \(\qquad\)
In your own words you should have said that the mode is a Measure of Central Tendency which, for any list of values, is that single value or group of values which occurs most often.

\section*{mean}

The mean will be biased unrealistically toward extreme atypical values so that it will not be relevant operationally.

1

\section*{MEETING THE CONDITIONS FOR USE}

89 If the median is used as the reporting statistic in a major reference paper on family income and health, the Measure of Central Tendency to use for any subsequent related reporting should be the \(\qquad\) .
median

comparability
(or comparable answers)

\section*{MEAN}

91 The mean should always be the Measure of Central Tendency of choice when not prohibited by the characteristics of the data or the eventual use of the statistics. List the three conditions which prohibit the use of the mean:
1. \(\qquad\)
2. \(\qquad\)
3. \(\qquad\)
\(\qquad\)

92 In any particular situation the mean may be the Measure of Central Tendency of choice except that it is not the one \(\qquad\) for the situation or the data; in this instance we might have to forego certain particular preferences in order to achieve \(\qquad\)
in our Measure of Central Tendency.

93 In any particular situation the mean may be the Measure of Central Tendency of choice except that the data contains \(\qquad\)
large or \(\qquad\) small atypical values. In this instance the mean would not be used because it would be biased unrealistically toward the \(\qquad\) values.
1. Another Measure of Central Tendency is the one generally accepted for the data or the situation involved.
2. The data contain extremely large or extreme ly small atypical values.
3. The data contain openended intervals.

Skip to Frame 95 if all your answers were correct.

94 In any particular situation the mean may be the Measure of Central Tendency of choice except that the data contain \(\qquad\) intervals. This condition would prevent you from being able to compute the sum of \(\qquad\) needed.
open-ended values

95 Unless prohibited by the characteristics of the ___ or the eventual \(\qquad\) of the statistics, the \(\qquad\) is always the Measure of Central Tendency of choice.

\section*{MEDIAN}

96 The first condition you should consider when you are evaluating the merits of using the median is the same as that for any other Measure of Central Tendency; namely,
1. \(\qquad\)

The other two conditions that favor the use of the median are those that prohibit the use of the mean; namely,
2. \(\qquad\)
3. \(\qquad\)
\(\qquad\)

Skip to Frame 98 if all your answers were correct.
1. It is the Measure of Central Tendency generally accepted for the data or the situation involved.
2. The data contain extremely large or extremely small atypical values.
3. The median is used when the data contain openended intervals.
1. The median is used when it is the Measure of Central Tendency generally accepted for the data or the situation involved.
2. The median is used when the data contain extremely large or extremely small atypical values.
3. The median is used when the data contain openended intervals.

The median is probably used most often when the first choice Measure of Central Tendency cannot be used. Therefore, if you remember the specific conditions that prohibit the use of the \(\qquad\) you will know when to use the median.

MODE
98 We cannot compute either the mean or the median when the data contain missing values, as in this list of ages:
\[
\begin{aligned}
& 2 \\
& 3 \\
& 3 \\
& 3 \\
& 4 \\
& \text { and } 1 \text { unknown value. }
\end{aligned}
\]

However, can we compute the mode for the above example? yes, the mode value is no, because
\(\qquad\)
\(\qquad\)
\(\qquad\)


99 We can compute the mode in the preceding frame because we can see that 3 is the most frequently occurring value. However, sometimes missing values prevent the use of the mode. Look at the following example:


Here it is possible that the 20 "unknown" values could all be the same value and that this value could be 4 visits. Since we cannot prove that this is not the case, we add the frequency of missing values to the second highest frequency of a known value:


The possible frequency of 4 visits is now:

The new frequency of 50 is greater than the frequency of \(\mathbf{4 0}\) for the known value which occurs most often. Therefore, we can / cannot compute the mode.

100 Although the mode can be used with atypical values, open-ended intervals, and many cases of missing values, it is still not generally used unless:
1. \(\qquad\)
\(\qquad\)
(Hint: This is the one common for all.)
2. \(\qquad\)
(Hint: This condition has to do with the definition of the mode.)

101 First, the mode is used when it is the Measure of Central Tendency generally accepted for the data or the situation involved. Second, the mode is not necessarily prohibited if the data have atypical or missing values or open-ended intervals-it can be used. However, the mode is still not usually used unless the investigator has a particular interest in the most \(\qquad\) value(s).
1. It is the Measure of Central Tendency generally accepted for the data or the situation involved.
2. Our interest is in the most frequently occurring value.

Skip to Frame 102 if all your answers were correct.

102 Write the name(s) of the particular Measure of Central Tendency to which each of the conditions below applies:
\(\qquad\) 1. Always the Measure of Central Tendency of choice unless prohibited by specific circumstances.
2. The Measure of Central Tendency generally accepted for the data or situation involved.
\(\qquad\) 3. The data contain extremely large or extremely small atypical values.
4. The data contain open-ended intervals.
5. The interest of the investigator is in the most frequently occurring values.
\(\qquad\) 6. Conditions 3 or 4 and the decision to use the Measure of Central Tendency of "second choice."

103 From memory, recall the conditions for using the mean: (Think your answer.)

104 From memory, recall the conditions for using the median: (Think your answer.)
mean
median, mode
median, mode
mode
median

The mean is always the Measure of Central Tendency of choice unless another Measure of Central Tendency is the one generally accepted for use for the data or situation involved; unless the data contain extremely large or extremely small atypical values; or unless the data contain open-ended intervals.

It is the Measure of Central Tendency generally accepted for use for the data situation involved; the data contain extremely large or extremely small atypical values; or the data contain open-ended intervals.

105 From memory, recall the conditions for using the mode: (Think your answer.)
It is the Measure of Central Tendency generally accepted for use for the data or situation involved, or the interest of the investigator is in the most frequently occurring value.

\section*{USING THE MEASURES OF CENTRAL TENDENCY}

106 From our earlier discussion you can see that "representativeness" and "comparability" are important characteristics when considering a Measure of Central Tendency. To answer the question, "How can a mean or median be used?", we simply expand the two characteristics as follows:

A mean or median can be used to \(\qquad\) all values of its
distribution, they can be \(\qquad\) to the mean or median for other distributions, and/or they can be used as a "normal" value against which individual values of their distribution can be \(\qquad\) .

107 A sanitarian reporting on his activities for the past 6 months says that he "averaged" 3.5 inspections per day. How is he using the Measure of Central Tendency? \(\qquad\)
\(\qquad\)
\(\qquad\)

108 The median income of Solka City West Clinic patients is \(\$ 3300\) per year; the median income of Solka City East Clinic patients is \(\$ 5500\) per year.

How is the Measure of Central Tendency used in this instance? \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

109 All mothers having delivery complications had less than the mean number of clinic visits during their first six months of pregnancy. How is the Measure of Central Tendency being used in this example? \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{represent \\ cempared compared}

He is using the Measure of Central Tendency (mean) to represent all values (visits per day).

The Measure of Central Tendency (median) of one distribution of values (income) is being compared to the Measure of Central Tendency (median) of another distribution of values (income).

The Measure of Central Tendency (mean) is being used as a "normal" value (number of visits) against which individual values (visits of problem delivery) are compared.

110 Both the mean and median can be used to represent all values of their distribution: both mean and median can be compared to means or medians of other distributions; and both mean and median can be used as a "normal" value against which individual values of their distribution can be compared.

However, because it can also be used in further statistical computation and applications, the mean / median is the Measure of Central Tendency of choice.
mean

No Answer Needed measure of dispersion within a distribution.

112 From memory recall the uses of the mean and median: \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

In your own words you should have written that both the mean and median can be used to represent all values of their distribution; both mean and median can be compared to means or medians of other distributions; and both mean and median can be used as a "normal" value against which individual values of their distribution can be compared. In addition the mean can be used in further statistical computation and application.

MEASURES OF CENTRAL TENDENCY USING THE ME ASURE OF CENTRAL TENDENCY

113 Use the worktable below to answer the questions:
WORKTABLE: Hypothetical Distribution Of 74 Resteurants By Number Of Inepections During One Yeer.
\begin{tabular}{cc}
\begin{tabular}{c} 
Number of \\
Inspections
\end{tabular} & \begin{tabular}{c} 
Number of \\
Recteurents
\end{tabular} \\
\hline \(1-2\) & 6 \\
\hline \(3-4\) & 12 \\
\hline \(5-6\) & 22 \\
\hline \(7-8\) & 19 \\
\hline \(11-12\) & 11 \\
\hline Totel & 4 \\
\hline
\end{tabular}
1. Which Measure(s) of Central Tendency could be used on the above data:
2. Which Measure(s) of Central Tendency should be used on the above data if not otherwise prohibited?

MEASURES OF CENTRAL TENDENCY USING THE MEASURES OF CENTRAL TENDENCY

114 Use the worktable below to answer the questions:
\begin{tabular}{cc}
\begin{tabular}{c} 
WORKTABLE: Distribution Of Paralytic Polio Cases, By Age, Texas, \\
January-October, 1982
\end{tabular} \\
\hline \begin{tabular}{c} 
Ace in \\
Yeers
\end{tabular} & \begin{tabular}{c} 
Number of \\
Cases
\end{tabular} \\
\hline \(\mathbf{0 - 4}\) & 77 \\
\hline \(\mathbf{5 - 9}\) & 22 \\
\hline \(\mathbf{1 0 - 1 4}\) & 8 \\
\hline \(\mathbf{1 5 - 1 9}\) & 5 \\
\hline \(\mathbf{2 0 - 2 9}\) & 4 \\
\hline \(\mathbf{3 0 - 3 9}\) & \begin{tabular}{c}
3 \\
\hline Totel
\end{tabular} \\
\hline 124 \\
\hline
\end{tabular}
1. Which Measure(s) of Central Tendency could be used on the above data?
2. Which Measure(s) of Central Tendency should not be used in view of the characteristics of the data? \(\qquad\)
Why? \(\qquad\)

\footnotetext{
1. mean, median, mode
2. mean
there are extreme
atypical values
(older cases) that
would bias the mean unrealistically high
}

115 Use the worktable below to answer the questions:
\begin{tabular}{cc} 
WORKTABLE: & Distribution Of 185 Boys By Weight. \\
\hline \begin{tabular}{c} 
Weight \\
In Pounds
\end{tabular} & \begin{tabular}{c} 
Number of \\
Boys
\end{tabular} \\
\hline \(60-64\) & 3 \\
\hline \(65-69\) & 23 \\
\hline \(70-74\) & 50 \\
\hline \(75-79\) & 51 \\
\hline \(80-84\) & 31 \\
\hline \(85-89\) & 11 \\
\hline \(90-94\) & 4 \\
\hline \(95-99\) & \(N=180\) \\
\hline 100 & 3 \\
\hline Total & 4 \\
\hline
\end{tabular}
- \(\geq\) is a symbol meaning "greater than or equal to."
1. Which Measure(s) of Central Tendency could be used on the above data?
2. Which Measure(s) of Central Tendency could not be used on the above data?

\section*{Why?}
1. median, mode
2. mean
all individual
values are not
given (open-ended
interval) and
therefore, the sum
of all values
needed to compute
the mean cannot be
determined.

116 A health administrator planning for peak periods of activity would be interested in which of the three types of Measures of Central Tendency?
\(\qquad\) Why? \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
117 An investigator wishes to compare income in a particular state with that of other
states. How will his methods of reporting "average" income be affected by the way other states report their average income? \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

118 An investigator in the incidence of VD will be doing exhaustive statistical analysis on his data. Which is the Measure of Central Tendency he will use?
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

119 From memory, recall the data used to compute the mean or the median: (Think your answer.)

He must use the same Measure of Central Tendency that is the generally accepted one for reporting income in order to insure comparability.
mean because it is the one
of choice especially when
additional statistical computa
tion and application will be
done

A list of the individual values or a table in which the values are listed according to their frequency of occurrence; the mean cannot be computed when data contain open-ended intervals; the median can.

120 From memory, recall how the mean and the median can be used: (Think your answer.)

121 What are the conditions for using the mean, median, or mode? (Think your answer.)

They can be used to represent all values of a distribution, to compare with the same type of Measure of Central Tendency of other distributions, and to compare as a "normal" value against individual values of a distribution; the mean can also be used in further statistical computations and applications.
1. The mean is the Measure of Central Tendency of choice unless prohibited by the conditions to follow.
2. Use the Measure of Central Tendency generally accepted for the situation.
3. Use the median or mode if the data contain extremely large or small atypical values.
4. Use the median or mode if some of the values of the data are contained in open-ended intervals.
5. Use the mode if the interest of the investigator is in the most frequently occurring value.

Digitized by GOOgle

\section*{RECOGNIZING CHARACTERISTICS OF THE DATA}

122 As we mentioned at the beginning of this Lesson, detailed techniques of computation are not covered. Rather, they are included in Guides which you will use whenever the need arises. However, you should learn how to recognize certain characteristics of the data that will affect the selection of the correct computational techniques.

\section*{DATA WITH N OF \(<50\) or \(\geq 50\)}

123 The technique you will use to compute a Measure of Central Tendency will often depend on the Number of values involved. Identify the random lists of values below as having an \(\boldsymbol{N}\) (count of individual values or total of frequencies) of . . .
a. less than \(50(<50)\)
b. greater than or equal to \(50(\geq 50)\)
\(\qquad\) 1. A random list of values: \(1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3\), \(3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6\), 6, 6 .
\(\qquad\) 2. A random list of values: \(5,5,10,10,15,15,20,20,20,25,25,25,30,30\), \(30,35,35,40,40,45,45,45,45,45,50,50,50,50,55,55,55,55,55,55\), \(55,60,60,60,60,60,65,65,70,75,80\).
\(\qquad\) 3. A random list of values: \(1,2,3,3,7,11,11,11,18,20,24,24,29,30,34\), \(37,42,43,48,50,50,55\).
\(\qquad\) 4.

WORKTABLE: A Random List of Values.
\begin{tabular}{cc}
\hline Values & \begin{tabular}{c} 
Frequency of \\
Value
\end{tabular} \\
\hline 2 & 6 \\
\hline 4 & 18 \\
\hline 6 & 24 \\
\hline 8 & 10 \\
\hline 10 & 8 \\
\hline
\end{tabular}
5.
wORKTABLE: A Random List Of Values.
\begin{tabular}{cc}
\hline Values & \begin{tabular}{c} 
Frequency of \\
Value
\end{tabular} \\
\hline \(10-19\) & 14 \\
\hline \(20-29\) & 23 \\
\hline \(30-39\) & 20 \\
\hline \(40-49\) & 15 \\
\hline \(50-59\) & 4
\end{tabular}

124 In any list of values, the Number of values must not be confused with the extent to which different figures representing size or quantity occur. In random list l. in Frame 123 the \(\mathbf{N}\) of 53 values is represented by only \(\qquad\) different figures; in worktable 4. the N of 66 values is represented by only \(\qquad\) different figures.

125 The size of the figures representing the values of a list in no way indicates the N of values in that list. In list No. 2. of Frame 123, there is an \(\mathbf{N}\) of \(<50\) values ( 45 to be exact) and yet the sizes of the values range up to \(\qquad\) (well above 50); in No. 4., the worktable, there is an \(N\) of \(\geq 50\) ( 66 values) and yet the highest value is only
\(\qquad\) (well below 50 ).

126 The difference between the lowest value of a list and the highest in no way indicates the \(N\) of the list. In list No. 3. of Frame 123, there is an \(N\) of only 22 values ( \(<50\) ) and yet the range represented is above / below 50 ; in No.4., the worktable, there is an N of 66 values \((\geq 50)\) and yet the range represented is above / below 50 .

127 To find the N for values listed in worktables you need only add the figures listed in the frequency column. The fourth and fifth examples (Nos.4. and 5.) in Frame 123 illustrate the fact that a worktable usually will have an \(\mathbf{N}<\mathbf{5 0} / \mathrm{N} \geq \mathbf{5 0}\).

\section*{DATA WITH DISCRETE OR CONTINUOUS VALUES}

128 The number of inspections made by 100 sanitarians during a particular week ranged from 1 through 5 each. Therefore, each sanitanan made either: \(\qquad\) , \(\qquad\) , \(\qquad\) ,
\(\qquad\) or \(\qquad\) inspections.

129 For statistical purposes, a sanitarian either makes an inspection or he doesn't. A sanitarian cannot make 5 or 2.75 actual inspections. Therefore, the values representing the number of inspections made by each sanitarian are said to be . . .
a. discrete values (indivisible units or counts).

131 All values are not discrete, i.e., indivisible units or counts. Sometimes values are units or counts that are at best very close approximations. For example, between humidity readings of .46 and .47 there may be actual readings of \(.461, .462, .463, \ldots\) and .469 ; or between .461 and .462 , there may be actual readings of \(.4611, .4612, .4613 \ldots\) and .4619. Therefore, the values representing humidity readings are said to be . . .
\(\qquad\) a. discrete values (indivisible units or counts).
b. continuous values (measurable as portions or fractions) depending on the accuracy of the gauge.

1, 2, 3, 4,
or
\(\qquad\)
b. continuous values (measurable as portions or fractions) .

130 The humidity readings for 75 hospital nurseries ranged from .46 through .54 each. Therefore, can we say that each hospital had a humidity reading of either \(.46, .47, .48, .49, .50, .51, .52, .53\), or .54 ?
\(\qquad\) yes
\(\qquad\) no
\(\qquad\) a. discrete

\(\qquad\)

132 DISCRETE values are indivisible units or counts that either happen or do not happen. They are usually counted not measured.

CONTINUOUS values are divisible units or counts that are stated in that form (fractional or whole numbers) which can be most accurately approximated (measured) and most conveniently used.

Identify the values named below as either . . .
a. discrete
b. continuous
\(\qquad\) 1. inspection
___ 2. millimeters of blood pressure
3. age
4. weight
5. person
6. height
7. pregnancy
8. illness
9. innoculation

\section*{MEASURES OF CENTRAL TENDENCY}

\section*{DATA WITH VALUE RANGE OF > 14 or < 15}

133 The technique you will use to compute a Measure of Central Tendency will often depend on the difference (range) between the highest and lowest values of your list. Identify the random lists of values below as having a range of ...
a. greater than \(14(>14)\)
b. less than \(15(<15)\)
1. A random list of discrete values: \(1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3\), \(\mathbf{3}, \mathbf{3}, \mathbf{3}, \mathbf{3}, \mathbf{3}, 3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5\), 5, 5, 5, 5, 6, 6, 6, 6 .
2. A random list of discrete values: \(5,5,5,5,10,10,10,10,15,15,15,20\), \(20,20,20,20,25,25,25,25,25,25,30,30,30,30,35,35,35,40,40\), \(\mathbf{4 0}, \mathbf{4 5}, \mathbf{4 5}, 45,45,45,45,45,45,45,50,50,50,50,50,50,50,50,55\), \(\mathbf{5 5}, \mathbf{5 5}, \mathbf{5 5}, 55,55,60,60,60,60,60,60,65,65,65,75,75,80,90\).
3.

WORKTABLE: A Random List Of Discrete Values.
\begin{tabular}{rc}
\hline Value & \begin{tabular}{c} 
Frequency of \\
Value
\end{tabular} \\
\hline 2 & 6 \\
\hline 4 & 18 \\
\hline 6 & 24 \\
\hline \(\mathbf{1 0}\) & 10 \\
\hline Total & 8 \\
\hline
\end{tabular}
4.

WORKTABLE: A Random List Of Discrete Values.
\begin{tabular}{lc}
\hline Value & \begin{tabular}{c} 
Frequency of \\
Value
\end{tabular} \\
\hline \(\mathbf{1 0 - 1 9}\) & 14 \\
\hline \(\mathbf{2 0}-29\) & 23 \\
\hline \(\mathbf{3 0 - 3 9}\) & 20 \\
\hline \(\mathbf{4 0 - 4 9}\) & 15 \\
\hline Total & 4 \\
\hline
\end{tabular}

\section*{MEASURES OF CENTRAL TENDENCY DATA WITH VALUE RANGE OF \(>14\) or \(<15\)}

134 If you are on this frame because the simplicity of the last one made you suspicious, let's look at each example in turn to see how really simple the frame was.
1. The high value is 6 , the low value 1 , the difference is \(\qquad\) and therefore, \(>14 /<15\).

135 In the list:
2. High value \(\qquad\) minus low value \(\qquad\) \(=\) \(\qquad\) ; \(>14 /<15\).
3. \(\qquad\) minus \(\qquad\) \(=\) \(\qquad\) ; \(>14 /<15\).
4. \(\qquad\) minus \(\qquad\) \(=\) \(\qquad\) ; \(>14 /<15\).

136 The four examples in Frame 133 support the fact that the question of \(>14\) or \(<15\) arises usually (if not always) when there is an \(N\) of \(<50 / \geq 50\).

137 Does further inspection of the four examples in Frame 133 support the fact that the list of values are in fact discrete or are treated as discrete values?
\(\qquad\)
yes
\(\qquad\) no

138 Actually the purpose of the \(>14\) or \(<15\) determination is to estimate the approximate number of different value sizes (figures) the data contains. This is particularly useful when you have an extremely large \(N\).

However, you saw in our discussion of discrete and continuous values, that only with discrete values can such a determination be made. Therefore, we must employ certain unusual devices and know certain things about our values to make the \(>14\) or \(<15\) determination work with continuous values.

If we knew, for 75 humidity readings ranging from .46 through .54 , that all were reported to the nearest hundredth, then how many possible readings are there? \(\qquad\)

139 You could have gotten the right answer to the last question by counting the values that could occur (in the hundredth) on your fingers; or you could have done as follows:
1. Ignoring the decimal places, \(\begin{aligned} & 54 \\ &-\frac{46}{8} \\ &+\frac{1}{9} \\ & \\ & \text { (which is how many different } \\ & \text { values may occur) }\end{aligned}\)

What if you know (can observe) that many, if not most, of the \(\mathbf{7 5}\) humidity readings are - reported to the nearest thousandth - would you then have \(>14\) or \(<15\) ? \(\qquad\)
How many different values would be possible? \(\qquad\)

140 The precision with which values are stated is usually obvious to you at the onset so that you would know in the last problem if the lowest reading should be stated as \(\mathbf{4 6}\) or \(\mathbf{. 4 6 0}\). If the latter then:
\begin{tabular}{rl}
\begin{tabular}{rl}
540 & (ignore decimal places) \\
-460 & (ignore decimal places) \\
\hline 80 & (this is \(>14\) ) \\
+1
\end{tabular} & \\
\hline 81 & (which is how many different values may occur)
\end{tabular}

141 Check the appropriate descriptions below that best describe the data that follows:
a. \(\mathbf{N}<50\)
b. \(N \geq 50\)
c. discrete values
d. continuous values

The following is a list of clinic visits made by each woman admitted to prenatal service in Walker County who delivered during 1960: 2, 5, 1, 3, 2, 4, 5, 7, 3, 6, 1, 3, 4, 2, 5, 4, 3,6 .


142 Check the appropriate descriptions below that best describe the data that follows:



143 Check the appropriate descriptions below that best describe the data that follows:
\(\qquad\) a. \(\mathrm{N}<50\)
b. \(\mathrm{N} \geq 50\)

c. discrete values
\(\qquad\) d. continuous values
\(\qquad\) e. range \(>14\)
f. range <15

WORKTABLE: Distribution Of 2-Year-Old Children Attending Woll-Child Clinics, By Height In Inches, Jones County, April-June, 1960.
\begin{tabular}{cc}
\hline \begin{tabular}{c} 
Height in \\
Inches
\end{tabular} & \begin{tabular}{c} 
Number of \\
Children
\end{tabular} \\
\hline 32 & 1 \\
\hline 33 & 4 \\
\hline 34 & 7 \\
\hline 35 & 9 \\
\hline 36 & 13 \\
\hline 38 & 9 \\
\hline 49 & 7 \\
\hline 41 & 2 \\
\hline 42 & 1 \\
\hline
\end{tabular}

144 Check the appropriate descriptions below that best describe the data that follows:
\(\qquad\) a. \(\mathrm{N}<50\)
\(\qquad\) b. \(\mathrm{N} \geq 50\)
\(\qquad\) c. discrete values
\(\qquad\) d. continuous values
\(\qquad\) e. range \(>14\)
\(\qquad\) f. range \(<15\)

Following is a list of weights to the nearest tenth of a pound at birth for live births occurring during 1960 to parents who are residents of Jones County: 3.4,4.9, \(5.6,11.6,8.5,9.1,7.6,8.2,6.7,7.4,6.0,6.5,9.6,9.8,10.0,7.5,8.3,7.7,8.1\), \(7.6,8.2,7.9,8.0,6.8,7.4,6.9,7.2,5.0,5.9,6.2,10.9,9.7,8.4,9.2,8.8,8.0\), \(7.8,8.2,7.6,7.5,9.2,6.6,7.4,7.1,8.3,8.1,7.5,7.7,8.2,9.1,8.5,4.9,6.3\), \(5.9,7.8,8.1,7.9,8.0,7.6,6.8,7.2,10.5,9.4,8.7,9.2,6.8,7.0,7.2,6.3,5.9\).


\section*{RESULTS OF FIELD DEMONSTRATIONS}

Field demonstrations of Measures of Central Tendency were held at the Center for Disease Control. Allanta, Ga., and at the Los Angeles County Health Department, Los Angeles, Calif. Measures of Central Tendency is the prerequisite Lesson for the threc-part course on Descriptive Statistics for the Health Professions. Other parts of the course are the Guide: Median and Guide: Arithmetic Mean.

Some 33 students at CDC took the pretest in a supervised group. Each student was then given a copy of the Lesson to complete on a take-home basis. The students met together a week later to take the posttest.

The 61 Los Angeles students worked in a formal classroom setting for three half-day sessions. A total of 4 hours classroom time was allotted each student to work on the leesson after taking the pretest under supervision. If necessary, each student was allowed extra time outside class to complete the Lesson. A posttest was administered when all of the students had completed the Lesson.

There were specific differences between the two groups. Students at CDC had voluntarily participated, while the Los Angeles participants had been requested to attend the course. Sixty percent of each group had college degrees. But \(33 \%\) of the CDC group had post-graduate degrees. In comparison, \(\mathbf{8 \%}\) of the Los Angeles students had post-graduate degrees.

\section*{RESULTS}
\begin{tabular}{ll|l} 
& Pretest & Posttest \\
\hline CDC. & \begin{tabular}{l} 
range \(=0 \%-48 \%\) \\
median \(=15 \%\)
\end{tabular} & \begin{tabular}{l} 
range \(=63 \%-100 \%\) \\
median \(=92 \%\)
\end{tabular} \\
\hline Los Angeles & \begin{tabular}{l} 
range \(=5 \%-45 \%\) \\
median \(=18 \%\)
\end{tabular} & \begin{tabular}{l} 
range \(=42 \%-100 \%\) \\
median \(=85 \%\)
\end{tabular} \\
\hline
\end{tabular}
```


[^0]: For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 75 cents

 Stock Number 1723-0047

